|
In data mining, intention mining or intent mining is the problem of determining a user's intention from logs of their behavior in interaction with a computer system, such as a search engine. This notion is introduced for the first time in a paper of Ghazaleh Khodabandelou et al.〔(Supervised intentional process models discovery using Hidden Markov models, Khodabandelou, G. ; Hug, C. ; Deneckere, R. ; Salinesi, C. IEEE Seventh International Conference on Research Challenges in Information Science (RCIS), 2013 )〕 Some authors model the intentions as an intentional process model in order to have a better understanding of the human way of thinking.〔(Supervised intentional process models discovery using Hidden Markov models, Khodabandelou, G. ; Hug, C. ; Deneckere, R. ; Salinesi, C. IEEE Seventh International Conference on Research Challenges in Information Science (RCIS), 2013 )〕 ==Application== Intention Mining has already been used in several domains: * Software Engineering (Ghazaleh Khodabandelou〔()〕 et al., 2013),〔(Supervised intentional process models discovery using Hidden Markov models, Khodabandelou, G. ; Hug, C. ; Deneckere, R. ; Salinesi, C. IEEE Seventh International Conference on Research Challenges in Information Science (RCIS), 2013 )〕(Ghazaleh Khodabandelou et al., 2014),〔Khodabandelou, Ghazaleh, et al. "Unsupervised discovery of intentional process models from event logs." Proceedings of the 11th Working Conference on Mining Software Repositories. ACM, 2014.〕 (Ghazaleh Khodabandelou et al., 2014),〔Khodabandelou, Ghazaleh, Charlotte Hug, and Camille Salinesi. "A novel approach to process mining: Intentional process models discovery." Research Challenges in Information Science (RCIS), 2014 IEEE Eighth International Conference on. IEEE, 2014.〕 * Web search : (Hashemi et al., 2008),〔Hashemi, R.R., Bahrami, A., LaPlant, J. & Thurber, K. (2008). Discovery of Intent through the Analysis of Visited Sites. In Arabnia, H.A & Hashemi, R.R., (Eds.), Proceedings of the 2008 International Conference on Information & Knowledge Engineering (pp. 417-422). CSREA Press.〕 (Zheng et al., 2002),〔Zheng, C., Fan, L., Huan, L., Yin, L., Wei-Ying, M. & Liu, W. (2002, November). User Intention Modeling in Web Applications Using Data Mining. World Wide Web, 5 (3) 181-191.〕 (Strohmaier & Kröll, 2012),〔Strohmaier, M. & Kröll, M. (2012). Acquiring knowledge about human goals from Search Query Logs. Information Processing & Management, 48 (1) 63-82.〕 (Kröll & Strohmaier, 2012),〔Kröll, M. & Strohmaier, M. (2009). Analyzing Human Intentions in Natural Language Text. In Gil, Y., & Fridman Noy, N. (Eds.), Proceedings of the 5th International Conference on Knowledge Capture (pp. 197-198). New York, NY, USA: ACM.〕 (Park et al., 2010),〔Park, K., Lee, T., Jung, S., Lim, H. & Nam, S. (2010). Extracting Search Intentions from Web Search Logs. In 2nd International Conference on Information Technology Convergence and Services (pp. 1-6).〕 (Jethava et al., 2011),〔Jethava, V., Calderón-Benavides, L., Baeza-Yates, R., Bhattacharyya, C. & Dubhashi, D. (2011). Scalable Multi-Dimensional User Intent Identification using Tree Structured Distributions. In Ma, W.-Y., Nie, J.-Y., Baeza-Yates, R.A., Chua, T.-S. & Croft, W.B. (Eds.), Proceedings of the 34th International ACM Conference on Research and development in Information Retrieval (pp. 395-404). New York, NY, USA: ACM.〕 (González-Caro & Baeza-Yates, 2011),〔González-Caro, C. & Baeza-Yates, R. (2011). A multi-faceted approach to query intent classification. In Grossi, R., Sebastiani, F. & Silvestri F. (Eds.), Proceedings of the 18th International Conference on String Processing and Information Retrieval (pp. 368-379). Berlin, Heidelberg: Springer.〕 (Baeza-Yates et al., 2006) 〔Baeza-Yates, R., Calderón-Benavides, R. & González-Caro, C. (2006). The intention behind web queries. In Crestani, F., Ferragina, P. & Sanderson, M. (Eds.), Proceedings of the 13th International Conference on String Processing and Information Retrieval (pp. 98-109). Berlin, Heidelberg: Springer.〕 * Business : Workarounds,〔Outmazgin, N. & Soffer, P. (2010). Business Process Workarounds: What Can and Cannot Be Detected by Process Mining. Lecture Notes in Business Information Processing, 147, 48-62.〕 (Epure, 2013),〔(Epure, E.V. (2013). Intention-mining: A solution to process participant support in process aware information systems (Master thesis). Utrecht University, The Netherlands. )〕 (Epure et al., 2014) 〔( What Shall I Do Next? Intention Mining for Flexible Process Enactment Elena V. Epure, Charlotte Hug, Rebecca Deneckere, Sjaak Brinkkemper, 26th International Conference on Advanced Information Systems Engineering (CAiSE), Thessaloniki : Greece (2014) )〕 * Engineering : Entity Relationship modelling,〔(Supervised intentional process models discovery using Hidden Markov models, Khodabandelou, G. ; Hug, C. ; Deneckere, R. ; Salinesi, C. IEEE Seventh International Conference on Research Challenges in Information Science (RCIS), 2013 )〕 Method Engineering,〔(Intelligent Agile Method Framework, Jankovic M., Bajec M., Khodabandelou G., Deneckere R., Hug C., Salinesi C., 8th International Conference on Evaluation of Novel Approaches to Software Engineering 2013 )〕 (Laflaquière et al., 2006),〔Laflaquière, J., Lotfi, Settouti, S., Prié, Y. & Mille, A. (2006). Trace-Based framework for experience management and engineering. In Gabrys, B, Howlett, R.J. & Jain, L.C. (Eds.), Proceedings of the 10th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, 1 (1) Berlin, Heidelberg: Springer, 1171-1178.〕 (Clauzel et al., 2009),〔Clauzel, D., Sehaba, K., & Prié, Y. (2009). Modelling and Visualising Traces for Reflexivity in Synchronous Collaborative Systems. In Badr, Y., Caballé, S., Xhafa, F., Abraham, A., & Gros, B. (Eds.), Proceedings of the 1st International Conference on Intelligent Networking and Collaborative Systems (pp. 16-23). IEEE.〕 Development traces 〔(Supervised vs. Unsupervised Learning for Intentional Process Model Discovery Khodabandelou G., Hug C., Deneckere R., Salinesi C. Dans Proceedings of Business Process Modeling, Development, and Support (BPMDS) pp. 282-291, 2014 )〕 * Home video : (Mei et al., 2005) 〔Mei, T., Hua, X.-S. & Zhou, H.-Q. (2005). Tracking users' capture intention: a novel complementary view for home video content analysis. In Proceedings of the 13th annual ACM International Conference on Multimedia (pp. 531-534). New York, NY, USA: ACM.〕 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Intention mining」の詳細全文を読む スポンサード リンク
|